The Animations of Tyson Ibele

by Andy SmithPosted on

Animator Tyson Ibele’s development of “tyFlow, a particle simulation tool for 3dsmax” has resulted in some absorbing creations. From writhing worm monsters and unraveling pixelated characters to a wave of colliding cyclists, Ibele’s tests move between humorous and disconcerting.

View this post on Instagram

tyFlow now features complex crowd simulation capabilities. It allows you to convert arbitrary rigs into dynamic tyFlow actors, blend smoothly between animation clips and maintain full control over all individual bodyparts at all times. You can easily convert actors into PhysX ragdolls and back again on the fly, have characters drop their props, lose limbs, trigger events, drive their rigidbody motion with keyframes, etc. tyFlow's fast, multi-threaded skinning system means the deforming meshes of your actors update as quickly as possible, and tyFlow has no trouble managing thousands of individual rigs simultaneously. This particular example was inspired by Dave Fothergill's fantastic crowd simulation demo from years ago. #tyflow #autodesk #physx #procedural #generative #animation #crowd #crowdsim #miarmy #golaem #simulation #cg #3d #vfx #3dsmax #houdini #cinema4d #maya #particles #mdcommunity #mgcollective #ssequential #plsur #chaosgroup #vray

A post shared by Tyson Ibele (@_tyflow_) on

On the worm-filled figure, in particular, he says, “ In total, 30,000 joint-articulated rigidbodies are present in the scene, and the 600-frame sequence simulates in about 30 minutes. Despite the overall complexity of the final result, the whole setup is maintained within just a few tyFlow events and operators, which keeps the workflow light and makes tweaks and changes easy to implement.”

See more of his work below.

View this post on Instagram

tyFlow's cloth solver is fully compatible with its crowd simulation abilities…and crowd actors don't have to be actual characters…they can take any form. Here I created a basic balloon model (mesh balloon + spline string) and imported it straight into tyFlow as a crowd actor. I then scattered 3000 of them over an animated character mesh, binding the end of each string to the character's surface. With a simple operator setup, all balloons were then converted to cloths and all splines were converted to ropes. An inflation force was also added to each balloon, giving them all some internal pressure. At random points in time, balloons were allowed to detach and float away. The result is a fully dynamic crowd simulation featuring balloons as individual actors with a lot of interesting details and motion. #tyflow #autodesk #physx #procedural #generative #animation #cloth #softbody #simulation #cg #3d #vfx #3dsmax #particles #mdcommunity #mgcollective #ssequential #plsur #chaosgroup #vray

A post shared by Tyson Ibele (@_tyflow_) on

View this post on Instagram

tyFlow's PhysX pipeline is closely tied to its rig skinning system. Combining the two makes it easy to simulate effects like rigidbody deformations. In this example, vehicles are skinned with rigidbodies connected together by tyFlow PhysX constraints. tyFlow's constraint deformation system allows for local deformations to form when portions of the constraint network undergo enough stress. The result is a deformable surface that maintains its overall rigidity, similar to how an actual car's exterior can be dented and damaged. Dynamic fracturing was also added to each window, allowing for glass to smash on impact. Since every part of the system is controlled procedurally by tyFlow, it is quick and easy to iterate and tweak. #tyflow #autodesk #physx #procedural #generative #animation #cloth #rigidbody #softbody #simulation #cg #3d #vfx #3dsmax #particles #mdcommunity #mgcollective #ssequential #plsur #chaosgroup #vray

A post shared by Tyson Ibele (@_tyflow_) on

View this post on Instagram

tyFlow makes it really easy to simulate ropes/ribbons/strings/etc. In this example, procedural ribbons bound by constraints grow off an animated character. By the end of the sequence, there are 7500 different ribbons with over 500,000 spline knots in the simulation. tyFlow's highly optimized multi-threaded spline mesher can generate the resulting 6-million-vertex mesh in under a second. In comparison, 3dsmax's built-in 'Renderable Spline' modifier takes 5 minutes to generate the mesh for a spline with only 40,000 spline knots on the same machine….so tyFlow's mesher is literally thousands of times faster than 3dsmax's built-in alternative. #tyflow #autodesk #physx #procedural #animation #simulation #cg #3d #vfx #3dsmax #houdini #cinema4d #maya #mdcommunity #mgcollective #ssequential #plsur

A post shared by Tyson Ibele (@_tyflow_) on

Comments are closed.